PORTFOLIO

COURSE: UNIT OPERATIONS II (PTH 403217)

TEACHING TEAM:

Dr. Ir. Umi Rosidah, MS Dr. Eka Lidiasari, S.TP., M.Si. Hermanto, S.TP., M.Si.

AGRICULTURAL PRODUCT TECHNOLOGY STUDY PROGRAM, FACULTY OF AGRICULTURE UNIVERSITAS SRIWIJAYA

A. COURSE IDENTITY

Module designation	Unit Operations II		
Semester (s) in which the module is taught	3 th semester/2 nd year		
Person responsible for	1. Dr. Ir. Umi Rosidah, MS		
the module	2. Dr. Eka Lidiasari, S.TP., M.Si.		
	3. Hermanto, S.TP., M.Si.		
Language	Indonesian		
Relation to curriculum	Compulsory Course		
Type of teaching,	-Lectures (explanation, discussion)		
contact hours	-Structured assignment (i.e.: explanation of problem solving followed		
	by solving new problem by studens\ts in groups))		
	-The class size 20-75 students per class		
	-Contact hours for lecture are 51.33 hours per semester		
	-Total hours practical is 19.83 hours per semester		
Workload (incl.	1. Lectures (2 x 50 minutes) per week or 51.33 hours per semester		
Contact hours, self-	2. Structured assignment (i.e.: explanation of problem solving		
study nours)	followed by solving new problem by studens\ts in groups): 2 x 60		
	minutes per week or 24 hours per semester		
	3. Self-study: 2 x 60 minutes per week or 24 hours per semester		
Credit points	3 credits (equivalent with 4.91 ECTS)		
Requirements	A student must have attended the lecture at least 85% of total lectures		
according to the	and submitted all the assignments prior to join the final exam		
examination			
Module	After completing this course, a student is expected to:		
learning outcomes	CLO1 Understand the basics of theory in the food processing		
iourning outcomes	process.		
	CLO2 Be able to explain the physical properties of foodstuffs that		
Outcomes	are used as the basis for calculations.		
	CLO3 Be able to calculate and analyze problems in the food		
	processing process.		

Content	1. Introduction and scope area in unit operatiopns II
	2. Moisture content of material (wet base and dry base)
	3. Vapor air properties (Psychrometric Chart)
	4. Calculation of energy requirements, volume of drying air, speed
	of drying time, volume of water lost in the drying process using
	 5. Rheological properties of foodstuffs (viscosity, consistency and type of fluid flow)
	(Coloritation of size of the consistence and first floor
	6. Calculation of viscosity, consistency and fluid flow
	7. Evaporation (heat and mass transfer process)
	8. Calculations in the evaporation process (mass and energy balance)
	9. Refrigeration (refrigeration temperature, non-freezing water,
	Equivalent Weight of solute, specific gravity, specific heat and
	heat conductivity of frozen food, cooling time, refrigeration and
	refrigerant)
	10. Calculations related to cooling
	11. Separation Process (Sedimentation, Centrifugal Separation,
	Liquid Separation and Filtration)
	12. Calculation in Separation process.
Examination forms	Assignment, Mid-terms and Final Examination
Media employed	LCD, whiteboard, websites
Reading List	1. Earle, R.L. 1983. Unit Operations in Food Processing. Published
	by NZIFST (Inc.)
	2. Albert, I and V.B. Gustavo. 2003. Unit Operations in Food
	Engineering. CRC Press, New York.
	3. Henderson, S.M., and Perry, R.L. 1976. Agricultural Process
	Engineering. The AVI Publishing Company, Wesport,
	Connecticut

B. STUDY LEARNING PLAN

Course Name	: Unit Operations II
Code/Credits	: PTH233
Course Status	: Mandatory

Short Description

Develop an understanding of principles in the processing of agricultural products and provide some examples of the use of these principles in several food industries. Analysis of all physical forms of processing agricultural products into smaller, simpler basic operations called unit operations. The discussion focuses on grain drying, rheology, evaporation, cooling and separation processes.

Objectives

After attending this course, students are expected to have an understanding of the basic operating concepts of drying, grain, rheology, evaporation, cooling and separation processes in agricultural product processing and to be able to develop these basic operating concepts in agricultural product processing.

Ъ <i>П</i>		$\boldsymbol{\Lambda}$	$(\mathbf{OT} \mathbf{O})$	D T .	$\boldsymbol{\Lambda}$	$(\mathbf{D}\mathbf{I} \mathbf{A})$
ΝΙΩΝΠΙΝΟ ΔΕ	I DIITCO I O	orning i hitee	$m_{\Delta C} (1 + 1 + 1)$	Program I D	orning i hitee	$m_{0}c_{1}P_{1}$
	COULSE LE	ai iiiii2 (7uitt	11163 () 1/7/7	-i i uzi ani Lu	ai iiiii2 (7uitt	////C3 \1_////

CLO	Description	PLO*			
		AV	KA	SC	GC
CLO1	Understand the basics of theory	2	4.4	4	1
	in the food processing process.		4.5		
CLO2	Be able to explain the physical	2	4.5	4	1
	properties of foodstuffs that are		4.6		
	used as the basis for calculations.				
CLO3	Be able to calculate and analyze	2	4.4	4	1
	problems in the food processing		4.5		
	process.		4.6		

AV = Attitude and Value; KA = Knowledge Ability; SC = Specific Capability; GC = General Capability

*Details are in the Study Program Curriculum file

Course Outlines:

Face-to-Face:

No.	Course materials	Duration (face-to-face)	CLO			
		(minutes)	1	2	3	
1	Explain the subject matter of the Unit Operations II course. Explain the function of water in food.	110	v		v	
2	Drying air properties. Use of psychrometric charts in grain drying.	110	v	v		
3	Calculation of the amount of water lost, energy requirements in the drying process	110		v	v	
4	Calculation of drying air volume, rate in drying process	110		v	v	
5	EVALUATION 1 meeting 1 to 4	110	v	v	v	
6	Definition of Rheology and viscosity.	110	v	v		
7	Type of fluid flow (Reynolds number)	110	v	v		
8	Evaporation and the principle of evaporation.	110	v	v		
9	Calculation of mass balance, energy balance and heat requirements in the evaporation process	110		v	v	
10	EVALUATION 2 meeting 6 to 9	110	v	v	v	
11	Definition of cooling (cooling temperature, water that is not frozen, BE dissolved substances, specific gravity, specific heat and heat conductivity of frozen food, cooling time)	110	v	v		
12	Definition of refrigeration (refrigeration and refrigerant)	110	V	v		
13	Problem solving in cooling	110			v	
14	Explain the separation process (Sedimentation, Centrifugal Separation, Liquid Separation and Filtration)	110	V	V		
15	Calculation of sedimentation problem	110			v	
16	EVALUATION 3 meeting 11 to 15	110	v	v	v	

Outcomes and Assessment

No.	Week	Sub-CLO	Assessment	Percentage of score weight to final score (%)
1	Ι	 Understand and be able to explain the function of water in food Calculating the moisture content of materials (wet basis and dry basis) 	Ask and answer question (face-to- face). At least 5% of students in the class are able to answer the question correctly. Calculate water content.	
2	Π	 Understand and be able to explain the nature of drying air. Studying psychrometric charts Understand and be able to explain the drying process by heating and cooling using a psychrometric chart. 	Ask and answer question (face-to- face). At least 5% of students in the class are able to answer the question correctly.	
3	III	 Able to calculate the weight of water lost during the drying process Able to calculate the energy requirements needed in the drying process 	Work on group to solve the drying problems (calculate the weight of water lost and energy requirements in the drying process)	
4	IV	 Able to calculate the required volume of drying air in relation to the RH of the air Able to calculate air velocity during the drying process 	Work on group to solve thedrying problems (calculate the required air volume and drying air speed)	
5	V	EVALUATION I (I - IV)	Essav exams	20
6	VI	 Understand and be able to explain rheology and viscosity Be able to explain the meaning of dynamic and kinematic viscosity. Understand and be able to explain reologi dan viscosity 	Ask and answer question (face-to- face). At least 5% of students in the class are able to answer the question correctly	
7	VII	Be able to distinguish the type of flow that occurs in a fluid by calculating the Reynolds number	Ask and answer questions (face-to- face). Assignment	
8	VIII	 Understand and be able to explain evaporation and the principles of evaporation Understand and be able to explain mass balance and energy balance 1. 	Ask and answer questions (face-to- face). Assignment	

9	IX	 Able to calculate the mass balance and energy balance that occurs in the evaporation process Able to calculate the heat/steam requirements needed in the evaporation process 	Ask and answer questions (face-to- face). Assignment	
10	Х	EVALUATION II (VI-IX)		20
11	XI	Definition of cooling (cooling temperature, water that is not frozen, dissolved substances equivalent weight, specific gravity, specific heat and heat conductivity of frozen food, cooling time)	Ask and answer question (face-to- face). At least 5% of students in the class are able to answer the question correctly	
12	XII	Definition of refrigeration (refrigeration and refrigerant)	Ask and answer question (face-to- face). At least 5% of students in the class are able to answer the question correctly	
13	XIII	Calculations about cooling	 Work on group cooling problems (cooling temperature, non- freezing water, solute equivalent Weight, specific gravity, specific heat and heat conductivity of frozen food, cooling time) Assignment 	
14	XIV	Explain the separation process (Sedimentation, Centrifugal Separation, Liquid Separation and Filtration)	Ask and answer question (face-to- face). At least 5% of students in the class are able to answer the question correctly	
15	XV	Calculation about separation	 Working on group separation process questions Assignment 	
16	XVI	EVALUATION III (XI – XV)		20

Assignment

No.	Week	Assignment Instructions	Submission Methods	Weight (%)
1	Π	Determine the properties of the drying air (wet bulb temperature, dry bulb temperature, RH, specific volume, enthalphy)	Send by whatsapp	
2	IV	Calculate the required air volume, enthalpy and time required for the drying process	Send by whatsapp	
3	VII	Calculate the resulting Reynolds number and determine the type of fluid flow	Send to google drive	
4	IX	Calculate the amount of water that evaporates and the final weight of the material that is evaporated Calculate how much heat is available in the appliance, how much heat is needed by the material and the amount of steam needed every hour in the evaporation process	Send to google drive	
5	XIII	A 3-cm thick slab of lean meat is placed inside a freezer in which the temperature is -25° C. The coefficient of heat transfer by convection from the surface of the meat is 15 J/(s·m2·°C). Determine the time needed to freeze the meat slab if 70% of its weight is water.	Send to email	
6	XV	A dispersion of oil in water is to be separated using a centrifuge. Assume that the oil is dispersed in the form of spherical globules 5.1 x 10-5 m diameter; its density is 894 kgm-3• If the centrifuge rotates at 1500 rev/mm and the effective radius at which the separation occurs is 3.8cm, calculate the velocity of the oil through the water. Take the density of water to be 1000kgm-3 and its viscosity to be 0.7 x 10-3Nsm-2• (The separation in this problem is the same as that in Example 10.2, in which the rate of settling under gravity was calculated.)	Send to email	
	Weight score	e of evaluation (%)	<u> </u>	20

Laboratory Practicum:

No.	Topics	Duration		CLO		Activities in	
						Laboratory	
			1	2	3		
1	Drying	170	v	v		Pre-test,	
2	Drying (observation day 1)	170		v	v	explanation from	
	(weighing)					assistant, practice	
						practical manual,	
3	Drying (observation day 2)	170		v	v	writing the results	
	(weighing)					in worksheet,	
	(weighing)					approval by	
1	Drying (observation day 3)	170		V	V		
-	Drying (observation day 5)	170		v	v		
	(weighing)						
5	Viscosity Rate Measurement	170		v	v		
6	Effect of Temperature and	170		v	v		
	Concentration on Fluid						
	Viscosity						
	Viscosity						
7	Texture Measurement in	170		V	V	-	
		170		v	v		
	Semi Fluids						
	Distribution of weight in	the lab practic	um scor	e: Pre-Tes	st (20%), j	practicum report	
	(20%), participation $(10%)$	b), final practic	cum exa	m (50%).	1.0	.1 1	
	All student should have I	00% of preser	here in the	e laborato	ry, and to	r those who are	
	Percentage of score weigh	tof laborator	nust take	to fin	-up practi	$\frac{1}{20\%}$	
	referringe of score weight of habitatory practiculit to final score is 20%.						

Contribution of Course Assessment to PLO

Course Assessment	AV	KA	SC	GC	Туре
Assignments	2	4.4, 4.5,	4	1	Formative
		4.6			
Questions in Quiz	2	4.4, 4.5,	4	1	Summative
		4.6			
Questions in Mid-Term	2	4.4, 4.5,	4	1	Summative
		4.6			
Questions in Final Exam	2	4.4, 4.5,	4	1	Summative
		4.6			
Lab Practicum	2	4.4, 4.5,	4	1	Formative
		4.6			

Assignment Assessment Rubric

			Score				
No.	Criteria	Weight	≥ 86	71-85.99	56-70.99	40-55.99	
		(%)					
			Excellent	Good	Enough	Bad	
1	Writing	20	Consistency in	The units	Units are only	There is no unit	
	units		writing units	written in the	written at the	in each stage of	
	correctly		from beginning	calculation	end of the	problem solving	
			to end.	of the	answer.		
				problem are			
				only 50%.			
2	Stages of	30	The stages of	The steps	The steps	There is no	
	problem		completion are	written are	written are	explanation/steps.	
	solving		in accordance	70% correct	50% correct	Only the final	
			with the			answer is written.	
			specified work				
			order.				
3	Accuracy	30	Problem	Problem	Problem	What is written is	
	in		solving is	solving is	solving is	only the final	
	calculations		carried out with	carried out	carried out	answer	
			accurate	with accurate	with accurate		
			calculations.	calculations	calculations		
				(70%)	(50%)		
4	Submission	20	Assignment is	Assignment	Assignment is	Assignment is	
	time		submitted	is submitted	submitted two	submitted after	
			before the	one day after	days after the	two days from	
			deadline	the deadline	deadline	deadline	

Benchmark for Scoring

No.	Range of Score	Grade	Description
1	86.00 - 100.00	А	Excellent
2	71.00 - 85.99	В	Good
3	56.00 - 70.99	С	Fair
4	40.00 - 55.99	D	Bad
5	<40.00	Е	Worst

Benchmark for Evaluation of the achievement of CLO

No.	Performance of Evaluation	Criteria
1	Very satisfactory	If $\geq 80\%$ of students in a class achieve Good and
1	very satisfactory	Excellent
2	Satisfactory	If 70-79.9% of students in a class achieve Good
	Satisfactory	and Excellent
3		If 60-69.9% of students in a class achieve Good
	Fairly satisfactory	and Excellent
4		If <60% of students in a class achieve Good and
	Unsatistactory	Excellent

Remedial Exam: Students are allowed to join Remedial Exam if the score is under 60 out of 100.

Course materials in Power Point Slides

Percentage of CLO Achievement per Class

CLASS: INDRALAYA A

No	Evaluation	Weight (%)	Score	CLO1	CLO2	CLO3	Level of Achievement
1	Assignment	20	84.25	93.94	93.94	93.94	Very Satisfactory
2	Evaluation I	20	83.24	93.94	93.94	93.94	Very Satisfactory
3	Evaluation II	20	65.24	6.06	6.06	6.06	Fairly Satisfactory
4	Evaluation III	20	60.70	9.09	9.09	9.09	Fairly Satisfactory
5	Lab Practicum	20	87.26	77.06	77.06	77.06	Very Satisfactory

CLASS: INDRALAYA B

No	Evaluation	Weight (%)	Score	CLO1	CLO2	CLO3	Level of Achievement
1	Assignment	20	87.00	100.00	100.00	100.00	Very Satisfactory
2	Evaluation I	20	85.65	100.00	100.00	100.00	Very Satisfactory
3	Evaluation II	20	88.60	100.00	100.00	100.00	Very Satisfactory
4	Evaluation III	20	88.08	97.50	97.50	97.50	Very Satisfactory
5	Lab Practicum	20	91.04	92.86	92.86	92.86	Very Satisfactory

CLASS: PALEMBANG

No	Evaluation	Weight (%)	Score	CLO1	CLO2	CLO3	Level of Achievement
1	Assignment	20	90.22	100.00	100.00	100.00	Very Satisfactory
2	Evaluation I	20	88.50	95.00	95.00	95.00	Very Satisfactory
3	Evaluation II	20	69.25	15.00	15.00	15.00	Fairly Satisfactory
4	Evaluation III	20	67.25	10.00	10.00	10.00	Fairly Satisfactory
5	Lab Practicum	20	95.38	100.00	100.00	100.00	Very Satisfactory